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Abstract. One-dimensional selfsimilar problems for waves in an elastic half-space generated by a sudden change of
the boundary stress (the “piston” problem) and problems of disintegration of an arbitrary discontinuity are con-
sidered. For the case when small-amplitude waves are generated in a medium with small anisotropy a qualitative
analysis shows that these problems have nonunique solutions when it is assumed that the solutions involve Rie-
mann waves and evolutionary discontinuities. The above-mentioned problems are considered as limits of properly
formulated problems for visco-elastic media when the viscosity tends to zero or (what is the same) that time tends
to infinity. It is numerically found that all above-mentioned inviscid solutions can represent the asymptotics of vi-
sco-elastic solutions. The type of asymptotics depends on those details of the visco-elastic problem formulation
which are absent when formulating inviscid selfsimilar problems. Similar considerations are made for elastic media
with dispersion along with dissipation which are manifested in small-scale processes. In such media the number
of available asymptotics (as t →∞) for the above-mentioned solutions depends on a relation between dispersion
and dissipation and can be large. Thus, two possible causes for the nonuniqueness of solutions to the equations
of elasticity theory are investigated.
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1. Introduction

Hyperbolic systems of equations expressing conservation laws play an important role in con-
tinuum mechanics. Examples of such systems are the gas-dynamic and magneto-hydrodynamic
equations, as well as the equations of the nonlinear theory of elasticity. When constructing
solutions of such equations one must introduce discontinuities on which the relations follow-
ing from the conservation laws are satisfied. If the relations on a discontinuity do not involve
any additional boundary conditions, except the conservation laws, then (as shown by P.Lax
[1]) one of n inequality systems relating the discontinuity velocity and characteristic velocities
behind and ahead of the discontinuity should be satisfied for boundary-condition correctness.
These conditions are known as the Lax conditions. In the Russian scientific literature they are
referred to as evolutionary conditions. For gas dynamics these conditions were formulated by
L. Landau [2].

When the Lax conditions are valid, all possible discontinuities are divided into n types
which are called shock waves. As shown in [1], if the relations on discontinuities and Riemann
waves are represented by series expansions up to ε3 (ε characterizes a wave amplitude), then
the self-similar problem on arbitrary discontinuity disintegration (the Riemann problem) has
a unique solution. In addition to the Lax conditions, the condition of non-decreasing entropy
should be satisfied if the entropy concept is defined for the initial system.
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As seen from the above, two interesting problems arise. The first is to construct solutions
for the case when it is not sufficient to consider expansions up to ε3, but discontinuities sat-
isfying the Lax conditions and the condition of non-decreasing entropy are assumed to exist
and used to construct solutions. The second concerns the problem of selecting discontinuities,
which are considered to be implemented (admissible) for one or other type of physical condi-
tions. The last problem is outside the framework of initial hyperbolic equations and requires
the introduction of additional physical hypotheses.

The main goal of this article is to study these problems for equations of the nonlinear the-
ory of elasticity and, not in the least, problems of nonuniqueness (obtained in Section 3) in
the case of medium anisotropy in planes of wave fronts. Until now, Riemann and shock waves
of small and finite amplitude have been considered for isotropic media [3–6]. One should also
mention the corresponding waves in ideal magneto-hydrodynamics [7]. In this case the solu-
tion of self-similar problems for a half-space appears to be unique, and this can be explained
by some degeneration of the problem due to properties of the isotropic medium in constant
phase planes for waves whose solution is constructed.

Anisotropy seems to be the case in general, which is not only attributable to medium
properties but also to medium predeformation. Let us note that nonuniqueness was previ-
ously obtained when solving many problems described by hyperbolic equations. For exam-
ple, longitudinal wave motions of elastic media and gases with complicated equations of state
[8–10] are examples in kind as well as wave motions described by first-order special equa-
tions [11]. In these papers dissipative terms with higher-order derivatives and small coefficients
were included into hyperbolic equations, making it possible to consider continuous solutions
(instead of discontinuities) with the parameters changing sharply in narrow zones, the so-
called shock-wave structures. It was assumed that physically admissible discontinuities corre-
spond to traveling waves having steady-state structures. This assumption makes it possible to
select the unique solution of each problem.

But there are examples of partial differential equations which are constructed to demonstrate
that the requirement for a structure to exist is not sufficient to obtain a unique solution [12–
14]. The solutions may be influenced by dissipation or initial conditions in infinitesimally small
regions. Another example of a similar nonuniqueness is the problem of wave-front propagation
in combustible gas mixtures. The solution of the large-scale problem involving a combustion or
detonation front depends on the mixture at ignition. The ignition process can be implemented
in a narrow region whose width is of the order of the combustion or detonation front thickness.

In Section 2 the basic concepts are formulated concerning one-dimensional nonlinear
small-amplitude waves in weakly anisotropic elastic media. Attention is focused on quasi-
transverse waves. Equations describing wave propagation and interaction of aligned waves of
this kind are obtained. The relations on a discontinuity and the condition of non-decreasing
entropy are formulated. Similitude conditions are formulated which show that for a given
solution in an isotropic medium one can find a similar solution with strains and stresses as
small as required.

In Section 3 Riemann and shock waves are analyzed. The self-similar solution of the “pis-
ton” problem is considered when on a boundary of the elastic uniformly stressed half-space
the applied stresses are suddenly changed. The solution for the Riemann and shock waves is
constructed. This solution appears to be non-unique. Due to the similitude condition (Section
2), nonuniqueness in an isotropic medium exists for arbitrarily small stresses and strains. No
such situations existed in previously considered problems in continuum mechanics.

In Section 4 viscous-stress terms are included in the equations of motion. Discontinuity
structures are studied and it is shown that structural solutions exist for evolutionary
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discontinuities only. This justifies using shock waves (evolutionary discontinuities) when
constructing solutions (Section 3). The results of a numerical analysis of non-self-similar
solutions with self-similar non-viscous asymtotics – which are solutions obtained in Section
3 – are presented. It is shown that transition (with time) to one or other non-viscous asymp-
totic solution may depend on initial or boundary conditions in time or space intervals that
are proportional to the viscosity coefficient. Thus, the non-viscous problem considered in Sec-
tion 3 cannot settle the question which solution is implemented in the nonuniqueness case.
This resembles the above-mentioned problem of combustible-gas-mixture ignition; however,
the nonuniqueness in the theory of nonlinear elasticity exists (as emphasized earlier) for arbi-
trarily small strains and stresses.

In Section 5 problems in the nonlinear theory of elasticity are considered when the small-
scale processes are determined not only by viscosity (as in Section 4), but also by dispersion
with dispersion playing the greater role. Solutions of a model equation are considered which
can describe nonlinear longitudinal wave propagation in a rod with a complicated strain-
stress dependence. It is shown that, when dispersion effects are essential, not all discontinuities
satisfying the Lax conditions are admissible, i.e., have stationary structures. Instead, special
discontinuities appear with an additional relation following from the requirement that the
structure exists and depends on the viscosity-dispersion relation. For a given state ahead of
the discontinuity, a set of such discontinuities is determined by the relation between viscos-
ity and dispersion coefficients. By increasing the relative dispersion effect, one obtains that
the number of such special discontinuities grows indefinitely. When constructing large-scale
solutions of continuous waves (without viscosity and dispersion effects) and of discontinu-
ities having structures, one obtains that the number of possible solutions corresponds to the
number of special discontinuities propagating through a given medium state. Thus, there is
nonuniqueness for which waves and fronts (of which solutions consist) and the number of
possible solutions depend on the dissipation–dispersion relation. Such nonuniqueness of solu-
tions did not arise in problems considered previously. Numerical analysis of non-self-similar
problems for which the above-mentioned solutions can be treated asymptotically (when time
tends to infinity), is presented.

2. Small-amplitude nonlinear waves

Let us restrict ourself to the case of nonlinear small-amplitude waves in elastic media with
small anisotropy. The anisotropy can be due to medium properties or previous deformation.
Thus, the presence of anisotropy can be considered in generality. It is known that linear waves
in isotropic media are divided into longitudinal and transverse. Transverse waves are waves of
two types (of various polarizations) propagating at the same velocity. For small anisotropy,
waves are divided into quasi-longitudinal and quasi-transverse, but, in the case under con-
sideration, quasi-transverse waves have two slightly different velocities. The nonuniqueness is
related to the behavior of quasi-transverse waves and, in what follows, only such waves will
be considered.

As in the case of the Hopf equation, describing the waves of one characteristic family,
one can obtain the equations which describe the waves of two characteristic families of quasi-
transverse waves when it is assumed that the disturbances carried on the remaining charac-
teristics are sufficiently small. In the general case the equations taking into account the main
order of a small nonlinearity and anisotropy and describing quasi-transverse waves in uniform
elastic media are [15, Chapter 7], [16].
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Here uα = ∂wα/∂x, x is the Lagrangian coordinate normal to wave fronts, wα are the tan-
gential components of the displacement vector, f , κ, g are combinations of coefficients in
the internal-energy expansion, f is the characteristic velocity in the case when the nonlin-
earity and anisotropy are absent, κ is the nonlinearity coefficient independent of anisotropy
(since nonlinearity and anisotropy are small), g is the coefficient of anisotropy assumed to be
small. Since anisotropy and ui are small, only the second-order terms responsible for anisot-
ropy are taken into account in expression (2). There are such terms for almost all types of
anisotropy if the chosen x-axis direction does not coincide with any of the special directions
of the medium. Besides, such second-order terms can be generated by small predeformation
in planes normal to the x-axis. These terms can be reduced to the form of the last term in
expression (2) when we turn the (x, y)-axes and single out the isotropic part. By choosing
the labelling of uα, one can always get: sign g = sign κ. If ui is of the order of ε, then g

should be of the order of ε2 for terms responsible for nonlinearity and anisotropy to be of
the same order. For originally isotropic media the coefficient g is proportional (with propor-
tionality factor of the order of unity) to ε1 − ε2 where ε1 and ε2 are the principal strains in
the wave plane. The remaining quantities changing in the wave can be expressed in terms of
u1 and u2. In particular, for longitudinal deformation the following equality holds

u3 =h(u2
1 +u2

2)+ const, u3 = ∂w3

∂x
(3)

where w3 is the displacement in the x-direction, the coefficient h is determined by medium
elastic properties. Equations (1) form a nonlinear hyperbolic system, at least, for sufficiently
small ui . The corresponding discontinuity conditions follow from the momentum conservation
laws [

∂H

∂uα

]
=W [uα], α =1,2, (4)

[u3]=h[u2
1 +u2

2]. (5)

Here W is the velocity of the discontinuity.
Equations (3) and (5) make it possible to eliminate u3. As usual, square brackets denote

jumps of parameters: [a] = a+ − a−. Equations (4) express conservation laws for momentum
components tangent to the discontinuity. An entropy change in a discontinuity is determined
from the energy conservation law. The condition of nondecreasing entropy is of the form{(

∂H

∂uα

)+
+

(
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)−}
[uα]≤0. (6)

By a Galileian transformation and by choosing for t , x and uα the scales of T , L with
L/T = |g| and

√
g/κ, respectively, one can obtain the canonical form of the system equa-

tions (1–3) with f = 0, g/κ = 1, κ = ±1. As follows from the above, if we have two Cau-
chy problems in two media with initial data u

0(1,2)
i (x), such that u

0(1)
α (x/L(1))
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g(1)/κ

(1) =
u

0(2)
α

(
x/L(2)

)/√
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(2) (with arbitrary L(1) and L(2)), then the solutions are similar [17,
Section 7.4.4]. Since in isotropic media g is of the order of ε1 − ε2 and can be arbitrarily
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small, all the following considerations and, in particular, the conclusion on nonuniqueness,
are also valid for problems in isotropic media with arbitrarily small strains.

For a self-similar piston the problem is posed as follows:

uα =Uα = const at t =0 for x >0,

uα =u∗
α = const at x =0 for t >0.

The solution depends on x/t and should involve both Riemann waves and discontinuities.
The problem of disintegration of an arbitrary discontinuity is reduced to two piston prob-

lems with initially unknown data for x =0, which should be obtained by boundary conditions
at this point. If nonuniqueness takes place for the piston problem, it also takes place for the
arbitrary discontinuity-disintegration problem.

3. Riemann and shock waves. Solution of piston problem

Riemann waves are solutions to a hyperbolic system (in our case of Equations (1)) of the
form

ui =ui(θ(x, t)) (7)

with an unknown function θ(x, t). Riemann waves in elastic media were considered in [18,3,
5, Chapter III]. In the case of small-amplitude waves in weakly anisotropic media it follows
[15,17,19, Chapter 3; Section 7.4.5] from (1), (7) that

(Hαβ − cδαβ)
duβ

dθ
=0, c=− ∂θ/∂t

∂θ/∂x
, Hαβ = ∂2H

∂uα∂uβ

α, β =1,2. (8)

For a solution to be nontrivial c should be one of the eigenvalues of the matrix Hαβ and
duβ/dθ should be components of the corresponding eigenvector. It follows from the second
equation of (8) that

∂θ

∂t
+ c(u1(θ), u2(θ))

∂θ

∂x
=0. (9)

The characteristics of the above equation are straight lines in the (x, t)-plane on which θ and
u1, u2 are constant. For a selfsimilar solution we have θ = x/t , c = x/t , so that c decreases
with t for x fixed.

In the (u1, u2)-plane integral curves of the first of equations (8) are tangent to eigenvectors
of the symmetric matrix ‖Hαβ‖ at each point and form two families of mutually orthogonal
curves. The axes u1 and u2 are symmetry axes of integral curves and c(u1, u2)= c(u1,−u2)=
c(−u1, u2) = c(−u1,−u2). At u1 = 0, u2 = ±√

G, G = g/κ the eigenvalues coincide: c1 = c2.
These points are singular points of the equations. Integral curves are given in Figure 1.

For κ >0 elliptic-like curves correspond to fast waves c=c2(u1, u2) and the hyperbolic-like
curves correspond to slow waves c = c1(u1, u2), c1 ≤ c2. The arrows indicate the direction of
decreasing c along the corresponding integral curves.

The discontinuities in u1 and u2 are described by Equation (4). If u1 =U1, u2 =U2 ahead of
the discontinuity, then behind the discontinuity u1 and u2 belong to a curve on the (u1, u2)-
plane which can be denoted as the shock adiabat [15, Chapter 4], [17, Section 7.4.6], [20, 21]

(u2
1 +u2

2 −R2)(U1u2 −U2u1)+2G(u1 −U1)(u2 −U2)=0, R2 =U2
1 +U2

2 . (10)
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u1

u2

Figure 1. Integral curves of quasitransverse Riemann
waves.

2

1

Figure 2. Hugoniot curve of quasi-transverse shocks.

Inequality (6) of nondecreasing entropy gives

κ(u2
1 +u2

2 −R2){(u1 −U1)
2 + (u2 −U2)

2}≤0. (11)

The typical form of the shock adiabat is shown in Figure 2. If an initial point (U1,U2) is
reflected from any of the (u1, u2)-axes (i.e., U1 or U2 changes sign), then the shock adiabatic
and W on it are also reflected from the same axis.

In the absence of external effects, relations (4) should be satisfied at all discontinuities. If
there are no additional conditions at the discontinuity, the correctness conditions in a vicinity
of the discontinuity for the linearized problem give restrictions on the velocity W :

(a) c−
2 ≤W, c+

1 ≤W ≤ c+
2 ,

(b) c−
1 ≤W ≤ c−

2 , W ≤ c+
1 .

(12)

Inequalities (12) are called the Lax conditions [1] or (a priori) evolutionary conditions. The
first group of inequalities, (a), determines fast shocks and the second (b), determines slow
shocks. For the case under consideration, the entropy condition (11) follows from the evo-
lutionary conditions (12).

Inequalities (12) can be represented in a diagram (Figure 3) in which both axes corre-
spond to shock velocities W . Discontinuities which do not satisfy inequalities (12) can not
exist due to non-correctness which manifest itself in unlimitedly fast growth of disturbances.
The parameters c−

1 , c−
2 and W can be shown on the horizontal axis in the same fixed scale,

but in the vertical direction the scales for velocities do not remain constant and only inequal-
ities between c+

1 , c+
2 and W are retained. The hatched rectangles correspond to inequalities

(12). The shock adiabatic is qualitatively shown on the diagram for κ >0 for the case of suffi-
ciently large U1/

√
G and U2/

√
G. The points having the same designations in Figures 2 and

3 correspond to each other. The evolutionary segments of the shock adiabatic are shown as
bold curves.

Solutions of a piston problem were analyzed in [15, Chapter 5], [17, Section 7.4.7], [22, 23].
For fixed initial values U1,U2, the whole u1, u2 plane is divided into domains in such a way
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Figure 3. Evolutionary diagram.

Figure 4. Nonuniqueness domain.

that, if boundary values u∗
1, u

∗
2 belong to one of them, then a definite combination of Rie-

mann waves and shocks gives the solution. If U1/
√

G and U2/
√

G are high (it is sufficient to
have U1/

√
G>2, U2/

√
G>2), there exists a domain which is the overlapping of two domains

with different solutions. In Figure 4, where domains for κ > 0 are shown, the domain with
two solutions is hatched.

In Figure 4 the evolutionary parts of the shock adiabatic with an initial point A(U1,U2)

are shown by bold curves. The wave combinations in domains neighboring the nonunique-
ness domain are symbolically denoted as S2S1 and S2J R2S2KS1. A fast shock is denoted by
S2 (in the case under consideration it corresponds to a jump from A to some point of the
interval KE), S1 denotes a slow shock, S2J is a fast shock A → J , R2 is a selfsimilar fast
Riemann wave, S2K is a shock of the same type as A→K. The solutions from neighboring
domains extend into the hatched domain. They differ everywhere, except the line PQQ′ where
the solutions coincide.

Let us note that one can conclude that solutions are nonunique in view of Figure 3. In [24]
the sufficient condition for nonunique solutions to the conservation law system to exist was
obtained. Is the case under consideration this condition is satisfied since only one evolution-
ary interval QE (Figure 3) is above the nonevolutionary interval PE of the shock adiabatic.

One can note that the more simple solution S2S1 in the nonuniqueness domain includes
a jump S1 from the initial point A to some point of interval QE. The interval is located in
the domain where the solution S2J R2S2KS1 also holds. Thus, in the framework of the consid-
ered “ideal” (inviscid, nondispersive) nonlinear theory of elasticity the fast shock S2 can dis-
integrate. However, whether this disintegration takes place when the nonideal nature of elastic
media is taken into account remains a question for the next sections.

The main results of Sections 2 and 3 were previously obtained using a system of nonlinear
elasticity equations. For simplicity, the results are represented here using the simplified Equa-
tions (1), (4).

4. Waves in viscous-elastic media. Inviscid limit

It is shown in this section that solutions of the piston problem constructed in Section 2 are
asymptotics of visco-elastic solutions for the viscosity tending to zero or (which is the same)
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for fixed viscosity and t →∞. There are many models of visco-elastic media, including those
that are described by integro-differential equations. In what follows the Kelvin–Voigt model
will be used. This model leads to the simplest equations which are convenient for the initial
analysis. At the same time, one can believe that results obtained for the Kelvin–Voigt model
appear to be valid for some other models as well.

Consider small-amplitude one-dimensional quasi-transverse waves propagating in the
positive x-direction; they are described by the following equations [15, Chapter 8],
[17, Section 7.4.8]

∂ui

∂t
+ ∂

∂x

(
∂H

∂ui

)
=µ

∂2ui

∂x2
, i =1,2. (13)

Here viscous terms with constant viscosity coefficient µ are added to Equations (1). The vis-
cosity is taken to be isotropic since anisotropy is assumed to be small and all the effects in
Equations (13) are taken into account by the main terms only. Dissipative processes due to
thermo-diffusion are not taken into account since temperature variations in quasi-transverse
waves are only of second order in a wave amplitude.

Equations (13), like (1), can be transformed to canonical form in which the equality µ=1
is valid, in addition to equalities f =0, κ/g=1, κ =±1. When Equations (1) are transformed,
the scales T and L are related by L/T =g only. In the case under consideration the relation
L2/T =µ should be added. Thus, L=µ/g, T =µ/g2.

The problem of shock-wave structure was considered in the framework of Equations (13)
[25,26]. It was found that stationary structures of the form ui =ui(x −Wt) correspond to all
evolutionary shocks and only to these.

The generalized piston problem

t =0, x >0 ui =Ui = const,

0≤ t ≤ δ, x =0 ui =u0
i (t), u0

i (0)=Ui, u0
i (δ)=u∗

i , (14)

t >δ, x =0 ui =u∗
i = const

is considered. The value of δ can be arbitrarily chosen, but it is evident that it can be chosen
proportional to µ and is restricted by time scales of viscous and nonlinear processes which
occur until a selfsimilar solution is achieved. As t → ∞ (or µ → 0 for fixed t), solutions of
generalized piston problems tend to selfsimilar solutions of problems in the ideal theory of
elasticity considered in Section 3.

Solutions of generalized piston problems for various functions u0
i (t) were numerically con-

structed [26–28]. When two selfsimilar solutions exist for Ui , u∗
i , it was found that in most

cases the simple selfsimilar solution S1S2 arises asymptotically as t →∞. Selfsimilar solutions
of the other type emerge if the trajectory of the point (u0

1(t), u
0
2(t)) goes into the nonuniqueness

domain from below, where only the selfsimilar solution SJ R1SKS2 (or R2) exists. Moreover, for
this complicated asymptotic to arise, the point (u0

1(t), u
0
2(t) should stay in the domain below for

a sufficiently long time.
The problem of two-shock-structure interaction has been numerically analyzed [29]. In the

case of nonuniqueness more simple asymptotics emerge.
A stability problem for a shock which can disintegrate was considered. It was shown that

such shocks are stable with respect to infinitesimal disturbances [30]. In visco-elastic media,
interactions of waves representing structures of such shocks with finite amplitude one-dimen-
sional and non-one-dimensional disturbances were numerically considered in [31,32]. As was
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Figure 5. Tension-strain dependence.

Figure 6. Graph of ϕ(u) function.

shown in a number of numerical experiments, for such a wave to disintegrate, one-dimen-
sional disturbances of amplitude comparable with a shock amplitude are required. In non-
one-dimensional cases it is shown that compactly supported disturbances can destroy the
waves in some domains for some time, but later the waves return to their initial forms [17].

These results confirm that in the case of nonuniqueness each of solutions to nonlinear
elastic problems can be implemented, at least, when they are considered as inviscid limits of
problems with viscosity.

5. Long waves in nonlinear media with dispersion and dissipation effects

In this section the simultaneous influence of dispersion and dissipation on the formation
of large-scale selfsimilar nonlinear solutions of the elasticity theory is analyzed. The terms
responsible for dispersion and dissipation in the equations lead to the appearance of some
typical linear scale l in the solutions. When large-scale phenomena are considered with space
scale L >> l, then the processes concerned with dissipation and dispersion can be mani-
fested only in the cases when the solutions are essentially changing in narrow (as compared
to L) regions. From the large-scale point of view such changes of the solutions should be
considered as discontinuities and continuous solutions in a vicinity of this discontinuity rep-
resent its structures. If solutions in the large-scale approximation are constructed for contin-
uous waves and discontinuities having structures, then it appears [33–35] that such solutions
are nonunique. The greater the role of dispersion (as compared to dissipation), the greater the
number of possible solutions will be. Solving the non-selfsimilar problems numerically (with
dispersion and dissipation taken into account) makes it possible to find solutions implemented
under specific conditions.

Consider first the propagation of longitudinal waves in visco-elastic rods with complicated
elastic properties. Let σ be the total tension in a rod section and u be a longitudinal strain.
Assume that the graph of σ(u) has two inflection points (Figure 5).

The strain u is ∂w/∂x where w is the displacement along the rod axis (the x-axis). For long
waves u depends on x and t . The function σ(u) is assumed to be a near linear one. The equation
describing the wave propagation can be written in the form [33]

∂2u

∂t2
= ∂2σ(u)

∂x2
+β2 ∂4u

∂t2∂x2
+α

∂3u

∂t∂x2
. (15)

Here x is the Lagrangian coordinate, the term with β2 represents main dispersion effects for
long waves and the last term represents viscosity effects according to the Kelvin–Voigt model.
For a circular rod Rayleigh obtained that the relation β = νr holds, where ν is the Poisson
coefficient and r is the rod radius. The coefficients β and α for small-amplitude waves can be
taken to be constant.
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For small nonlinearity, independent equations can be derived for waves propagating in the
positive and negative directions of the x-axis (as when deriving the Burgers and Korteweg-de
Vries equations). For waves propagating in the positive x-direction we have

∂u

∂t
+ ∂ϕ(u)

∂x
=µ

∂2u

∂x2
−m

∂3u

∂x3
, (16)

µ= 1
2
α, m= 1

2
c0 β2, ϕ(u)=

∫
c(u)du c(u)=

√
dσ

du
.

Here c0 is a mean value of c(u) in the interval of u-variations. Since the right-hand side of
Equation (16) is small, some approximations were made. In particular, ∂/∂t was replaced by
−c0∂/∂x.

The graph of the function ϕ(u) has the same two inflection points as the graph of σ(u).
Indeed, ϕ′′ = σ ′′/

√
2ϕ′. After a Galileian transformation the function c(u) obtains an addi-

tional constant and the function ϕ(u) obtains a linear term. Thus, the graph of ϕ(u) can be
represented, as shown in Figure 6.

In calculations the following form is used

ϕ(u)=u4 −u2. (17)

For very long waves the right-hand side of Equation (16) can be neglected and the corre-
sponding discontinuity condition takes the form

∂u

∂t
+ c(u)

∂u

∂x
=0, W = [ϕ(u)]

[u]
, c(u)= dϕ

du
. (18)

Here c(u) is the characteristic velocity and W is the shock velocity.
Stationary structures of discontinuities are described as follows

u=u(ξ), ξ =x −Wt,

m
d2u

dξ2
−µ

du

dξ
=F(u), F (u)=W(u−u−)− (ϕ(u)−ϕ(u−)), (19)

lim
ξ→∞

u(ξ)=u−, lim
ξ→−∞

u(ξ)=u+.

The set of values behind the shock u+ for which the solution of the structure problem (19)
exists for a given value ahead of the shock u− was investigated in [33,36]. It consist of inter-
vals and separate points. The set of u+ is shown in Figure 7 as bold intervals and points on
the graph ϕ(u) for u− =−1, m= 1 · 3, µ= 0 · 05. The number and positions of intervals and
points depend on u− and mµ−2. Both the number of intervals and the number of points tend
to infinity as mµ−2 → ∞. If 0 < u− < u+ and F(u) > 0 on (u−, u+), there exists a structure
solution of the discontinuity u− →u+.

Differential equation (18) has continuous solutions as well, which have no tendency to dis-
continuity formation. For these solutions the characteristic velocity c(u(x)) is a nondecreasing
function of x.

When solutions to “ideal” systems like (18) are constructed, the hypothesis is frequently
made that only discontinuities with stationary structures can exist. In many cases the hypoth-
esis makes it possible to select a unique solution of the problem [8,11]. In particular, this is
the case for solutions to Equations (18) when the discontinuity structure is described by (19)
with m=0 [11].
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For sufficiently large values of mµ−2 the requirement of the structure to exist does not
determine the solution to Equations (18) uniquely. Indeed, consider a problem of the disin-
tegration of an arbitrary discontinuity: at t = 0, u=u− =−1 for x > 0 and u=u+ for x < 0.
In the graph of the function ϕ(u) the first state is denoted by A and the second by F . In
the situation corresponding to Figure 7 there are five piece-wise constant solutions. One solu-
tion involves only one discontinuity A→F . Four other solutions involve two discontinuities
A→ Ci and Ci → F , i =1,2,3,4. As mentioned, the number of separate points Ci increases
with mµ−2. The number of solutions with shocks to which stationary structures correspond
also grows.

Similar problems arise in a number of other physical problems with the dispersion in dis-
continuity structures. The propagation of quasi-transverse nonlinear elastic waves in compos-
ites [34] and nonlinear electromagnetic waves in magnets [35,37] are such problems.

A number of numerical solutions to Equation (16) was analyzed to determine what kind of
arbitrary discontinuity decomposition takes place and under which circumstances. The solu-
tions to the Cauchy problem for Equation (16) of the form

u=u− for x >a, u=u+ for x <a,

u=u0(x/a) for −1≤x/a ≤1, u0(−1)=u+, u0(1)=u− (20)

were numerically obtained for various functions u0(x/a). Obviously, for the fixed function u0

the asymptotic to the solution is not changed for a greater than a∗ which is determined by
the space scale of the asymptotic shock structures. The Cauchy problem (20) can be called the
generalized problem of an arbitrary discontinuity decomposition. The selfsimilar asymptotics
as t →∞ were obtained.

As results of numerical experiments it has been found that:
(a) Stationary structures of discontinuities are stable. If the initial function u0(x/a) is a

slightly perturbed stationary structure, the perturbation tends to zero with time growing.
The stability of stationary structures means that, for every solution involving disconti-
nuities with stationary structures, there exists a domain of such functions u0(x/a) in a
functional space for which solutions of the Cauchy problem (16), (20) tend to the above-
mentioned selfsimilar solutions.

(b) Along with discontinuities with stationary structures, there are discontinuities with
unsteady structures that are periodic in time. Since the perturbations do not propagate
from the discontinuity structure to infinity, the second equation of (18) remains valid,
but in this case W is a mean velocity. When u− = −1, an oscillating structure exists if
u+ >u(P ) (P is a point in Figure 7).

Figure 7. Set of values u behind shocks with stationary structure on the shock adiabat.
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(c) If for given u−, u+ a selfsimilar asymptotic involving discontinuities with unsteady struc-
ture exists, this asymptotic arises, as a rule, as t →∞, for a generalized problem of arbi-
trary discontinuity decomposition with nonspecial initial functions u0(x). One can say
that, in a functional space of functions u0(x), the attraction domain of selfsimilar as-
ymptotics involving discontinuities with unsteady structures is greater than the attraction
domain of selfsimilar asymptotics involving discontinuities with stationary structures.

Let us note that analytical and numerical investigations of the generalized Cauchy problem
on an arbitrary discontinuity decomposition show that for mµ−2 �1 there are many different
asymptotic cases depending on u0(x).

6. Conclusions

The nonuniqueness of selfsimilar solutions of the equations of nonlinear elasticity has been
demonstrated. It can occur for small perturbations of a homogeneous state. The analysis shows
that there are two different reasons for the nonuniqueness to exist. For quasi-transverse small-
amplitude waves in a weakly anisotropic medium, solutions of selfsimilar problems are con-
structed when discontinuities used in solutions satisfy the Lax conditions. It is shown that such
discontinuities (and only such) have structures due to the viscosity. It appears that under these
conditions there are two different solutions for some range of parameters determining the prob-
lem. It has been shown numerically that non-self-similar solutions of viscous-elastic equations
which tend to inviscid asymptotics can be different depending on the details of the initial and
boundary conditions. The details are concerned with time and space intervals which depend on
the viscosity and tend to zero with viscosity. The details determining the type of the viscous
asymptotic are not included in the hyperbolic problem formulation. Therefore one should use
more detailed equations, the viscous-elastic equations in the case under consideration.

The dispersion effect for longitudinal waves in a rod leads to discontinuities which do not
satisfy the Lax conditions. The number of such discontinuities of different type is determined
by the relative influence of two competing effects in a shock-wave structure – dispersion and
viscosity – and this number can be large. Besides, the numerical analysis of non-self-simi-
lar problems with viscosity and dispersion shows that there are discontinuity structures with
internal time-depending oscillations in addition to the above-mentioned discontinuities with
steady-state (stationary) structures. This leads to multiple nonuniqueness of the problem. As
before, to determine a correct self-similar asymptote, one should not restrict oneself to study-
ing the solutions of hyperbolic systems but also consider more complicated equations. In con-
trast to the previous case, the non-Laxian discontinuities are not known beforehand now and
should be found from the requirement that a structure should exist.

From the problems considered above one can conclude that nonuniqueness of solutions
to hyperbolic systems of continuum mechanics, including nonlinear elasticity equations, is the
rule rather than the exception. In cases of nonuniqueness one should consider more compli-
cated systems of equations which have continuous solutions and take into account real small-
scale processes. Such detailed equations and initial data are required to predict the behavior
of global solutions.
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